JAI SHREE RAM ....
Welcome Guest
Login /Register
Universe On Web
Top Story : UniverseOnWeb.com .....
 
 
solar system
 
Search Engine

 

Uranus Planet


Solar System Explanation ::-- Sun|| Solar Planet || Mercury Planet || Jupitor Planet || Venus Planet || Earth Planet || Uranus Planet || Saturn Planet || Mars Planet || Neptune Planet || Dwarf Planet || Astroids || Comet ||


Facts about Planet Uranus

* Diameter: 51,500 km (32,000 miles)

* Temperature: -197.15 C (-322.87° F)

* Orbit: Takes 84 years to complete an orbit.

* Average Distance: 2,870,972,200 km (1,783,939,400 miles - 19.2 AU) from Sun 
* Mass: 8.6849 x 1025 kg

* Moons: 27

* Period of Rotation: 17.24 hours (retrograde: spins backwards compared to most other planets)

 

Uranus is the seventh planet from the Sun and the third largest (by diameter). Uranus is larger in diameter but smaller in mass than Neptune.

Uranus is the ancient Greek deity of the Heavens, the earliest supreme god. Uranus was the son and mate of Gaia the father of Cronus (Saturn) and of the Cyclopes and Titans (predecessors of the Olympian gods).

Uranus, the first planet discovered in modern times, was discovered by William Herschel while systematically searching the sky with his telescope on March 13, 1781. It had actually been seen many times before but ignored as simply another star (the earliest recorded sighting was in 1690 when John Flamsteed cataloged it as 34 Tauri). Herschel named it "the Georgium Sidus" (the Georgian Planet) in honor of his patron, the infamous (to Americans) King George III of England; others called it "Herschel". The name "Uranus" was first proposed by Bode in conformity with the other planetary names from classical mythology but didn't come into common use until 1850.

 

Uranus has been visited by only one spacecraft, Voyager 2 on Jan 24 1986.



Most of the planets spin on an axis nearly perpendicular to the plane of the ecliptic but Uranus' axis is almost parallel to the ecliptic. At the time of Voyager 2's passage, Uranus' south pole was pointed almost directly at the Sun. This results in the odd fact that Uranus' polar regions receive more energy input from the Sun than do its equatorial regions. Uranus is nevertheless hotter at its equator than at its poles. The mechanism underlying this is unknown.

Actually, there's an ongoing battle over which of Uranus' poles is its north pole! Either its axial inclination is a bit over 90 degrees and its rotation is direct, or it's a bit less than 90 degrees and the rotation is retrograde. The problem is that you need to draw a dividing line *somewhere*, because in a case like Venus there is little dispute that the rotation is indeed retrograde (not a direct rotation with an inclination of nearly 180).

Uranus is composed primarily of rock and various ices, with only about 15% hydrogen and a little helium (in contrast to Jupiter and Saturn which are mostly hydrogen). Uranus (and Neptune) are in many ways similar to the cores of Jupiter and Saturn minus the massive liquid metallic hydrogen envelope. It appears that Uranus does not have a rocky core like Jupiter and Saturn but rather that its material is more or less uniformly distributed.

Uranus' atmosphere is about 83% hydrogen, 15% helium and 2% methane.



Uranus is the seventh planet from the Sun. It has the third-largest planetary radius and fourth-largest planetary mass in the Solar System. It is named after the ancient Greek deity of the sky Uranus (Ancient Greek: Οὐρανός), the father of Cronus (Saturn) and grandfather of Zeus (Jupiter). Though it is visible to the naked eye like the five classical planets, it was never recognized as a planet by ancient observers because of its dimness and slow orbit. Sir William Herschel announced its discovery on March 13, 1781, expanding the known boundaries of the Solar System for the first time in modern history. Uranus was also the first planet discovered with a telescope.
Uranus is similar in composition to Neptune, and both are of different chemical composition than the larger gas giants, Jupiter and Saturn. As such, astronomers sometimes place them in a separate category called "ice giants". Uranus's atmosphere, while similar to Jupiter and Saturn's in its primary composition of hydrogen and helium, contains more "ices" such as water, ammonia and methane, along with traces of hydrocarbons. It is the coldest planetary atmosphere in the Solar System, with a minimum temperature of 49 K (−224 °C). It has a complex, layered cloud structure, with water thought to make up the lowest clouds, and methane thought to make up the uppermost layer of clouds. In contrast, the interior of Uranus is mainly composed of ices and rock.
Like the other giant planets, Uranus has a ring system, a magnetosphere, and numerous moons. The Uranian system has a unique configuration among the planets because its axis of rotation is tilted sideways, nearly into the plane of its revolution about the Sun. As such, its north and south poles lie where most other planets have their equators. Seen from Earth, Uranus's rings can sometimes appear to circle the planet like an archery target and its moons revolve around it like the hands of a clock; in 2007 and 2008 the rings appeared edge-on. In 1986, images from Voyager 2 showed Uranus as a virtually featureless planet in visible light without the cloud bands or storms associated with the other giants. Terrestrial observers have seen signs of seasonal change and increased weather activity in recent years as Uranus approached its equinox. The wind speeds on Uranus can reach 250 meters per second (900 km/h, 560 mph).


uranus planet

Uranus Orbit and rotation

Uranus revolves around the Sun once every 84 Earth years. Its average distance from the Sun is roughly 3 billion km (about 20 AU). The intensity of sunlight on Uranus is about 1/400 that on Earth. Its orbital elements were first calculated in 1783 by Pierre-Simon Laplace. With time, discrepancies began to appear between the predicted and observed orbits, and in 1841, John Couch Adams first proposed that the differences might be due to the gravitational tug of an unseen planet. In 1845, Urbain Le Verrier began his own independent research into Uranus's orbit. On September 23, 1846, Johann Gottfried Galle located a new planet, later named Neptune, at nearly the position predicted by Le Verrier.
The rotational period of the interior of Uranus is 17 hours, 14 minutes. As on all giant planets, its upper atmosphere experiences very strong winds in the direction of rotation. At some latitudes, such as about two-thirds of the way from the equator to the south pole, visible features of the atmosphere move much faster, making a full rotation in as little as 14 hours.

Uranus Internal structure

Uranus's mass is roughly 14.5 times that of the Earth, making it the least massive of the giant planets. Its diameter is slightly larger than Neptune's at roughly four times Earth's. A resulting density of 1.27 g/cm3 makes Uranus the second least dense planet, after Saturn. This value indicates that it is made primarily of various ices, such as water, ammonia, and methane. The total mass of ice in Uranus's interior is not precisely known, as different figures emerge depending on the model chosen; it must be between 9.3 and 13.5 Earth masses. Hydrogen and helium constitute only a small part of the total, with between 0.5 and 1.5 Earth masses. The remainder of the non-ice mass (0.5 to 3.7 Earth masses) is accounted for by rocky material.
The standard model of Uranus's structure is that it consists of three layers: a rocky (silicate/iron-nickel) core in the center, an icy mantle in the middle and an outer gaseous hydrogen/helium envelope. The core is relatively small, with a mass of only 0.55 Earth masses and a radius less than 20% of Uranus's; the mantle comprises the bulk of the planet, with around 13.4 Earth masses, while the upper atmosphere is relatively insubstantial, weighing about 0.5 Earth masses and extending for the last 20% of Uranus's radius. Uranus's core density is around 9 g/cm3, with a pressure in the center of 8 million bars (800 GPa) and a temperature of about 5000 K. The ice mantle is not in fact composed of ice in the conventional sense, but of a hot and dense fluid consisting of water, ammonia and other volatiles. This fluid, which has a high electrical conductivity, is sometimes called a water–ammonia ocean. The bulk compositions of Uranus and Neptune are very different from those of Jupiter and Saturn, with ice dominating over gases, hence justifying their separate classification as ice giants. There may be a layer of ionic water where the water molecules break down into a soup of hydrogen and oxygen ions, and deeper down superionic water in which the oxygen crystallises but the hydrogen ions move freely within the oxygen lattice.
While the model considered above is reasonably standard, it is not unique; other models also satisfy observations. For instance, if substantial amounts of hydrogen and rocky material are mixed in the ice mantle, the total mass of ices in the interior will be lower, and, correspondingly, the total mass of rocks and hydrogen will be higher. Presently available data does not allow science to determine which model is correct. The fluid interior structure of Uranus means that it has no solid surface. The gaseous atmosphere gradually transitions into the internal liquid layers. For the sake of convenience, a revolving oblate spheroid set at the point at which atmospheric pressure equals 1 bar (100 kPa) is conditionally designated as a "surface". It has equatorial and polar radii of 25 559 ± 4 and 24 973 ± 20 km, respectively. This surface will be used throughout this article as a zero point for altitudes.

Uranus Rings

Uranus also has rings, though they don't stretch out as far as the rings of Saturn. The rings of Uranus are made up of black dust particles and large rocks.

Moons: 
Uranus has 27 moons. Five of these moons are large and the rest are smaller. The largest moon is Titania, followed by Oberon, Umbriel, Ariel and Miranda. Some of the smaller moons are named: Belinda, Bianca, Caliban, Cordelia, Cressida, Desdemona, Juliet, Ophelia, Portia, Puck, and Rosalind.

 

Facebook
Twitter
Orkut
Youtube
 
 
WELCOME TO UNIVERSE ON WEB , PORTAL DEDICATED TO UNIVERSE...