Welcome Guest
Login /Register
Universe On Web
Top Story : UniverseOnWeb.com .....
solar system
Search Engine


Neptune Planet

Solar System Explanation ::-- Sun|| Solar Planet || Mercury Planet || Jupitor Planet || Venus Planet || Earth Planet || Uranus Planet || Saturn Planet || Mars Planet || Neptune Planet || Dwarf Planet || Astroids || Comet ||

Planet Neptune Facts:

Mass: 17.15 Earth-masses

Number of known satellites: 13

Length of Year: 164.8 Earth-years

Mean Distance from the Sun: 4,500 million kilometers
Mean Orbital Velocity: 5.4 kilometers per second
Length of Day: 16.11 hours, 0.67 Earth-day
Equatorial diameter: 49,500 kilometers

Atmospheric components: 74% hydrogen, 25% helium, 1% methane

Moons of Planet Neptune

Neptune has 13 known moons: Triton, Thalassa, Naiad, Despina, Galatea, Larissa, Proteus and Nereid

Triton has the coldest temperatures in the solar system. Voyager observed geysers.


Neptune is named after the Roman god of the sea.

The Great Dark Spot

Voyager 2 observed the Great Dark Spot. Recent observations made with the Hubble Space Telescope indicate that the Great Dark Spot no longer exists.


Neptune's atmosphere is made up of hydrogen, helium, and methane. Like Earth's atmosphere, Neptune's has clouds and storm systems that revolve around the planet, but with wind speeds of 300 m/sec (700 miles/hr) and clouds of frozen methane.


Neptune has six rings which circle the planet. Neptune's rings have been given names: the outermost is Adams (which contains three prominent arcs now named Liberty, Equality and Fraternity), next is an unnamed ring co-orbital with Galatea, then Leverrier (whose outer extensions are called Lassell and Arago) and finally the faint but broad Galle.


In 1613 Galileo observed Neptune when it happened to be very near Jupiter, but he thought it was just a star. Neptune was first observed by Johann  Galle and Heinrich D'Arrest 23 September 1846 Sept 23 very near to the locations independently predicted by Adams and Le Verrier from calculations based on the observed positions of Jupiter, Saturn and Uranus.

On 12 July 2011, Planet Neptune celebrated its first birthday since its discovery on 24 Sept 1846. It was exactly 1 Neptunian year (164.79 Earth years) on its birthday.

Neptune is the eighth and farthest planet from the Sun in the Solar System. Named for the Roman god of the sea, it is the fourth-largest planet by diameter and the third largest by mass. Neptune is 17 times the mass of Earth and is slightly more massive than its near-twin Uranus, which is 15 times the mass of Earth but not as dense. On average, Neptune orbits the Sun at a distance of 30.1 AU, approximately 30 times the Earth–Sun distance. Its astronomical symbol is ♆, a stylized version of the god Neptune's trident.
Discovered on September 23, 1846, Neptune was the first planet found by mathematical prediction rather than by empirical observation. Unexpected changes in the orbit of Uranus led Alexis Bouvard to deduce that its orbit was subject to gravitational perturbation by an unknown planet. Neptune was subsequently observed by Johann Galle within a degree of the position predicted by Urbain Le Verrier, and its largest moon, Triton, was discovered shortly thereafter, though none of the planet's remaining 12 moons were located telescopically until the 20th century. Neptune has been visited by only one spacecraft, Voyager 2, which flew by the planet on August 25, 1989.
Neptune is similar in composition to Uranus, and both have compositions which differ from those of the larger gas giants, Jupiter and Saturn. Neptune's atmosphere, while similar to Jupiter's and Saturn's in that it is composed primarily of hydrogen and helium, along with traces of hydrocarbons and possibly nitrogen, contains a higher proportion of "ices" such as water, ammonia and methane. Astronomers sometimes categorize Uranus and Neptune as "ice giants" in order to emphasize these distinctions. The interior of Neptune, like that of Uranus, is primarily composed of ices and rock. Traces of methane in the outermost regions in part account for the planet's blue appearance.
In contrast to the relatively featureless atmosphere of Uranus, Neptune's atmosphere is notable for its active and visible weather patterns. For example, at the time of the 1989 Voyager 2 flyby, the planet's southern hemisphere possessed a Great Dark Spot comparable to the Great Red Spot on Jupiter. These weather patterns are driven by the strongest sustained winds of any planet in the Solar System, with recorded wind speeds as high as 2,100 km/h. Because of its great distance from the Sun, Neptune's outer atmosphere is one of the coldest places in the Solar System, with temperatures at its cloud tops approaching −218 °C (55 K). Temperatures at the planet's centre are approximately 5,400 K (5,000 °C). Neptune has a faint and fragmented ring system, which may have been detected during the 1960s but was only indisputably confirmed in 1989 by Voyager 2.

Neptune Planetary rings

Neptune has a planetary ring system, though one much less substantial than that of Saturn. The rings may consist of ice particles coated with silicates or carbon-based material, which most likely gives them a reddish hue. The three main rings are the narrow Adams Ring, 63000 km from the centre of Neptune, the Le Verrier Ring, at 53000 km, and the broader, fainter Galle Ring, at 42000 km. A faint outward extension to the Le Verrier Ring has been named Lassell; it is bounded at its outer edge by the Arago Ring at 57000 km.
The first of these planetary rings was discovered in 1968 by a team led by Edward Guinan, but it was later thought that this ring might be incomplete. Evidence that the rings might have gaps first arose during a stellar occultation in 1984 when the rings obscured a star on immersion but not on emersion. Images by Voyager 2 in 1989 settled the issue by showing several faint rings. These rings have a clumpy structure, the cause of which is not currently understood but which may be due to the gravitational interaction with small moons in orbit near them.
The outermost ring, Adams, contains five prominent arcs now named Courage, Liberté, Egalité 1, Egalité 2 and Fraternité (Courage, Liberty, Equality and Fraternity). The existence of arcs was difficult to explain because the laws of motion would predict that arcs would spread out into a uniform ring over very short timescales. Astronomers now believe that the arcs are corralled into their current form by the gravitational effects of Galatea, a moon just inward from the ring.Earth-based observations announced in 2005 appeared to show that Neptune's rings are much more unstable than previously thought. Images taken from the W. M. Keck Observatory in 2002 and 2003 show considerable decay in the rings when compared to images by Voyager 2. In particular, it seems that the Liberté arc might disappear in as little as one century.


Neptune Orbit and rotation

The average distance between Neptune and the Sun is 4.50 billion km (about 30.1 AU), and it completes an orbit on average every 164.79 years, subject to a variability of around ±0.1 years.
On July 9, 2011, Neptune completed its first full barycentric orbit since its discovery in 1846, although it did not appear at its exact discovery position in our sky because the Earth was in a different location in its 365.25-day orbit. Because of the motion of the Sun in relation to the barycentre of the Solar System, on 11 July Neptune was also not at its exact discovery position in relation to the Sun; if the more common heliocentric coordinate system is used, the discovery longitude was reached on July 9, 2011.The elliptical orbit of Neptune is inclined 1.77° compared to the Earth. Because of an eccentricity of 0.011, the distance between Neptune and the Sun varies by 101 million km between perihelion and aphelion, the nearest and most distant points of the planet from the Sun along the orbital path, respectively.
The axial tilt of Neptune is 28.32°, which is similar to the tilts of Earth (23°) and Mars (25°). As a result, this planet experiences similar seasonal changes. The long orbital period of Neptune means that the seasons last for forty Earth years. Its sidereal rotation period (day) is roughly 16.11 hours. Since its axial tilt is comparable to the Earth's, the variation in the length of its day over the course of its long year is not any more extreme.
Because Neptune is not a solid body, its atmosphere undergoes differential rotation. The wide equatorial zone rotates with a period of about 18 hours, which is slower than the 16.1-hour rotation of the planet's magnetic field. By contrast, the reverse is true for the polar regions where the rotation period is 12 hours. This differential rotation is the most pronounced of any planet in the Solar System, and it results in strong latitudinal wind shear.